Find the real values of $x$ and $y$ for which the complex number $\left(-3+i y x^{2}\right)$ and $\left(x^{2}+y+4 i\right)$ are conjugates of each other.
Let $z_{1}=-3+i y x^{2}$
So, the conjugate of $Z_{1}$ is
$\overline{z_{1}}=-3-i y x^{2}$
And $z 2=x^{2}+y+4 i$
So, the conjugate of z2 is
$\bar{z}_{2}=x^{2}+y-4 i$
Given that: $\overline{z_{1}}=z_{2} \& z_{1}=\bar{z}_{2}$
Firstly, consider $\overline{z_{1}}=z_{2}$
$-3-i y x^{2}=x^{2}+y+4 i$
$\Rightarrow x^{2}+y+4 i+i y x^{2}=-3$
$\Rightarrow x^{2}+y+i\left(4+y x^{2}\right)=-3+0 i$
Comparing the real parts, we get
$x^{2}+y=-3 \ldots$ (i)
Comparing the imaginary parts, we get
$4+y x^{2}=0$
$\Rightarrow x^{2} y=-4 \ldots$ (ii)
Now, consider ${ }^{Z}_{1}=\bar{Z}_{2}$
$-3+i y x^{2}=x^{2}+y-4 i$
$\Rightarrow x^{2}+y-4 i-i y x^{2}=-3$
$\Rightarrow x^{2}+y+i\left(-4 i-y x^{2}\right)=-3+0 i$
Comparing the real parts, we get
$x^{2}+y=-3$
Comparing the imaginary parts, we get
$-4-y x^{2}=0$
$\Rightarrow x^{2} y=-4$
Now, we will solve the equations to find the value of x and y
From eq. (i), we get
$x^{2}=-3-y$
Putting the value of $x^{2}$ in eq. (ii), we get
$(-3-y)(y)=-4$
$\Rightarrow-3 y-y^{2}=-4$
$\Rightarrow y^{2}+3 y=4$
$\Rightarrow y^{2}+3 y-4=0$
$\Rightarrow y^{2}+4 y-y-4=0$
$\Rightarrow y(y+4)-1(y+4)=0$
$\Rightarrow(y-1)(y+4)=0$
$\Rightarrow y-1=0$ or $y+4=0$
$\Rightarrow y=1$ or $y=-4$
When $y=1$, then
$x^{2}=-3-1$
$=-4$ [It is not possible]
When $y=-4$, then
$x^{2}=-3-(-4)$
$=-3+4$
$\Rightarrow x^{2}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x=\pm 1$
Hence, the values of $x=\pm 1$ and $y=-4$