Question:
Find the real values of x and y for which:
$x+4 y i=i x+y+3$
Solution:
Given: x + 4yi = ix + y + 3
or $x+4 y i=i x+(y+3)$
Comparing the real parts, we get
$x=y+3$
Or $x-y=3 \ldots$ (i)
Comparing the imaginary parts, we get
$4 y=x \ldots$ (ii)
Putting the value of $x=4 y$ in eq. (i), we get
$4 y-y=3$
$\Rightarrow 3 y=3$
$\Rightarrow y=1$
Putting the value of y = 1 in eq. (ii), we get
x = 4(1) = 4
Hence, the value of x = 4 and y = 1