Question:
Find the real value of $a$ for which $3 i^{3}-2 a i^{2}+(1-a) i+5$ is real.
Solution:
$3 i^{3}-2 a i^{2}+(1-a) i+5$
$=-3 i+2 a+(1-a) i+5$
$=(2 a+5)+i(1-a-3)$
$=(2 a+5)+i(-2-a)$
Since, $3 i^{3}-2 a i^{2}+(1-a) i+5$ is real.
$\therefore \operatorname{Im}\left[3 i^{3}-2 a i^{2}+(1-a) i+5\right]=0$
$\Rightarrow-2-a=0$
$\Rightarrow a=-2$
Hence, the real value of $a$ for which $3 i^{3}-2 a i^{2}+(1-a) i+5$ is real is $-2$.