Question:
Find the rate percent per annum, if Rs 2000 amount to Rs 2315.25 in an year and a half, interest being compounded six monthly.
Solution:
Let the rate percent per annum be $\mathrm{R}$.
Because interest is compounded every six months, n will be 3 for $1.5$ years.
Now,
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{200}\right)^{\mathrm{n}}$
$2,315.25=2,000\left(1+\frac{\mathrm{R}}{200}\right)^{3}$
$\left(1+\frac{\mathrm{R}}{200}\right)^{3}=\frac{2,315.25}{2,000}$
$\left(1+\frac{\mathrm{R}}{200}\right)^{3}=1.157625$
$\left(1+\frac{\mathrm{R}}{200}\right)^{3}=(1.05)^{3}$
$1+\frac{\mathrm{R}}{200}=1.05$
$\frac{\mathrm{R}}{200}=0.05$
$=10$
Thus, the required rate is $10 \%$ per annum.