Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies.
Question:
Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies.
Solution:
Let T be the total surface area of a cylinder. Then,
$T=2 \pi r(r+h)$
Since the radius varies, we differentiate the total surface area w.r.t. radius r.
Now,
$\frac{d T}{d r}=\frac{d}{d r}[2 \pi r(r+h)]$
$\Rightarrow \frac{d T}{d r}=\frac{d}{d r}\left(2 \pi r^{2}\right)+\frac{d}{d r}(2 \pi r h)$
$\Rightarrow \frac{d T}{d r}=4 \pi r+2 \pi h$
$\Rightarrow \frac{d T}{d r}=2 \pi(r+h)$