Find the range of the following functions given by
(i) $f(x)=\frac{3}{2-x^{2}}$
(ii) $f(x)=1-|x-2|$
(iii) $f(x)=|x-3|$
(iv) $f(x)=1+3 \cos 2 x$
(i)
$f(x)=\frac{3}{2-x^{2}}$
According to the question, Let $f(x)=y$,
Let $f(x)=y$,
$y=\frac{3}{2-x^{2}}$
$\Rightarrow 2-x^{2}=\frac{3}{y}$
$\Rightarrow x^{2}=2-\frac{3}{y}$
But, we know that, $x^{2} \geq 0$
$2-\frac{3}{y} \geq 0$
$\Rightarrow \frac{2 y-3}{y} \geq 0$
⇒ y>0 and 2y–3≥0
⇒ y>0 and 2y≥3
⇒ y>0 and y ≥ 3/2
Or f(x)>0 and f(x) ≥ 3/2
f(x) ∈ ( – ∞, 0) ∪ [ 3/2 , ∞)
$\Rightarrow \mathrm{f}(\mathrm{x}) \in(-\infty, 0) \cup\left[\frac{3}{2}, \infty\right)$
Therefore, the range of f = ( – ∞, 0) ∪ [ 3/2 , ∞)
(ii) f(x) = 1–|x–2|
According to the question,
For real value of f,
|x–2|≥ 0
Adding negative sign, we get
Or –|x–2|≤ 0
Adding 1 we get
⇒ 1–|x–2|≤ 1
Or f(x)≤1
⇒ f(x)∈ (–∞, 1]
Therefore, the range of f = (–∞, 1]
(iii) f(x) = |x–3|
According to the question,
We know |x| are defined for all real values.
And |x–3| will always be greater than or equal to 0.
i.e., f(x) ≥ 0
Therefore, the range of f = [0, ∞)
(iv) f (x) = 1 + 3 cos2x
According to the question,
We know the value of cos 2x lies between –1, 1, so
–1≤ cos 2x≤ 1
Multiplying by 3, we get
–3≤ 3cos 2x≤ 3
Adding 1, we get
–2≤ 1 + 3cos 2x≤ 4
Or, –2≤ f(x)≤ 4
Hence f(x)∈ [–2, 4]
Therefore, the range of f = [–2, 4]