Question:
Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.
Solution:
Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\hat{b}=7 \hat{i}-\hat{j}+8 \hat{k}$.
Now, projection of vector $\vec{a}$ on $\vec{b}$ is given by,
$\frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b})=\frac{1}{\sqrt{7^{2}+(-1)^{2}+8^{2}}}\{1(7)+3(-1)+7(8)\}=\frac{7-3+56}{\sqrt{49+1+64}}=\frac{60}{\sqrt{114}}$