Find the principal values of each of the following:
(i) $\cot ^{-1}(-\sqrt{3})$
(ii) $\cot ^{-1}(\sqrt{3})$
(iii) $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
(iv) $\cot ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
(i) Let $\cot ^{-1}(-\sqrt{3})=y$
Then,
$\cot y=-\sqrt{3}$
We know that the range of the principal value branch is $(0, \pi)$.
Thus,
$\cot y=-\sqrt{3}=\cot \left(\frac{5 \pi}{6}\right)$
$\Rightarrow y=\frac{5 \pi}{6} \in(0, \pi)$
Hence, the principal value of $\cot ^{-1}(-\sqrt{3})$ is $\frac{5 \pi}{6}$.
(ii) Let $\cot ^{-1}(\sqrt{3})=y$
Then,
$\cot y=\sqrt{3}$
We know that the range of the principal value branch is $(0, \pi)$.
Thus,
$\cot y=\sqrt{3}=\cot \left(\frac{\pi}{6}\right)$
$\Rightarrow y=\frac{\pi}{6} \in(0, \pi)$
Hence, the principal value of $\cot ^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.
(iii) Let $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=y$
Then,
$\cot y=-\frac{1}{\sqrt{3}}$
We know that the range of the principal value branch is $(0, \pi)$.
Thus,
$\cot y=-\frac{1}{\sqrt{3}}=\cot \left(\frac{2 \pi}{3}\right)$
$\Rightarrow y=\frac{2 \pi}{3} \in(0, \pi)$
Hence, the principal value of $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is $\frac{2 \pi}{3}$.
(iv)
Let $\cot ^{-1}\left(\tan \frac{3 \pi}{4}\right)=y$
Then,
$\cot y=\tan \frac{3 \pi}{4}$
We know that the range of the principal value branch is $(0, \pi)$.
Thus,
$\cot y=\tan \frac{3 \pi}{4}=-1=\cot \left(\frac{3 \pi}{4}\right)$
$\Rightarrow y=\frac{3 \pi}{4} \in(0, \pi)$
Hence, the principal value of $\cot ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is $\frac{3 \pi}{4}$.