Find the principal values of each of the following:
(i) $\operatorname{cosec}^{-1}(-\sqrt{2})$
(ii) $\operatorname{cosec}^{-1}(-2)$
(iii) $\operatorname{cosec}^{-1}\left(\frac{2}{\sqrt{3}}\right)$
(iv) $\operatorname{cosec}^{-1}\left(2 \cos \frac{2 \pi}{3}\right)$
(i) Let $\operatorname{cosec}^{-1}(-\sqrt{2})=y$
Then,
cosec $y=-\sqrt{2}$
We know that the range of the principal value branch is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.
Thus,
$\operatorname{cosec} y=-\sqrt{2}=\operatorname{cosec}\left(-\frac{\pi}{4}\right)$
$y=-\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \neq 0$
Hence, the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.
(ii)
Let $\operatorname{cosec}^{-1}(-2)=y$
Then,
cosec $y=-2$
We know that the range of the principal value branch is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.
Thus,
$\operatorname{cosec} y=-2=\operatorname{cosec}\left(-\frac{\pi}{6}\right)$
$y=-\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \neq 0$
Hence, the principal value of $\operatorname{cosec}^{-1}(-2)$ is $-\frac{\pi}{6}$.
(iii) Let $\operatorname{cosec}^{-1}\left(\frac{2}{\sqrt{3}}\right)=y$
Then,
$\operatorname{cosec} y=\frac{2}{\sqrt{3}}$
We know that the range of the principal value branch is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.
Thus,
$\operatorname{cosec} y=\frac{2}{\sqrt{3}}=\operatorname{cosec}\left(\frac{\pi}{3}\right)$
$\Rightarrow y=\frac{\pi}{3} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \neq 0$
Hence, the principal value of $\operatorname{cosec}^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{3}$.
(iv)
Let $\operatorname{cosec}^{-1}\left(2 \cos \frac{2 \pi}{3}\right)=y$
Then,
$\operatorname{cosec} y=2 \cos \frac{2 \pi}{3}$
We know that the range of the principal value branch is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.
Thus,
$\operatorname{cosec} y=2 \cos \frac{2 \pi}{3}=2 \times \frac{-1}{2}=-1=\operatorname{cosec}\left(-\frac{\pi}{2}\right)$
$\Rightarrow y=-\frac{\pi}{2} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \neq 0$
Hence, the principal value of $\operatorname{cosec}^{-1}\left(2 \cos \frac{2 \pi}{3}\right)$ is $-\frac{\pi}{2}$.