Question:
Find the principal argument of $(-2 i)$
Solution:
Let, z = -2i
Let $0=r \cos \theta$ and $-2=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(-2)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+4=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 4=r^{2}$
$\Rightarrow r=2$
$\therefore \cos \theta=0$ and $\sin \theta=-1$
Since, θ lies in fourth quadrant, we have
$\theta=-\frac{\pi}{2}$
Since, $\theta \in(-\pi, \pi]$ it is principal argument.