Question:
Find the principal and general solutions of the equationÂ
Solution:
$\tan x=\sqrt{3}$
It is known that $\tan \frac{\pi}{3}=\sqrt{3}$ and $\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\sqrt{3}$
Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{4 \pi}{3}$.
Now, $\tan x=\tan \frac{\pi}{3}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Therefore, the general solution is $\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$