Find the positive value of $m$ for which the coefficient of $x^{2}$ in the expansion of $(1+x)^{m}$ is 6
To find: the positive value of m for which the coefficient of x2 in the expansion of $(1+x)^{m}$ is 6
Formula Used:
General term, $T_{r+1}$ of binomial expansion $(x+y)^{n}$ is given by,
$T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$ where
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n !}{r !(n-r) !}$
Now, finding the general term of the expression, $(1+x)^{m}$, we get
$\mathrm{T}_{\mathrm{r}+1}={ }_{\mathrm{m}} \mathrm{C}_{\mathrm{r}} \times 1^{\mathrm{m}-\mathrm{r}} \times(\mathrm{x})^{\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}} \times(\mathrm{x})^{\mathrm{r}}$
The coefficient of $(\mathrm{x})^{2}$ is ${ }^{\mathrm{m}} \mathrm{C}_{2}$
${ }^{\mathrm{m}} \mathrm{C}_{2}=6$
$\frac{\mathrm{m} !}{2(\mathrm{~m}-2) !}=6$
$\frac{m(m-1)(m-2) !}{2(m-2) !}=6$
$\mathrm{m}^{2}-\mathrm{m}-6=0$
$(m-3)(m+2)=0$
$m=3,-2$
Since m cannot be negative. Therefore,
m=3
Thus, positive value of $m$ is 3 for which the coefficient of $x 2$ in the expansion of $(1+$ $\mathrm{x})^{\mathrm{m}}$ is 6