Find the points on the curve $2 a^{2} y=x^{3}-3 a x^{2}$ where the tangent is parallel to $x$-axis.
Let $\left(x_{1}, y_{1}\right)$ represent the required points.
The slope of the $x$-axis is 0 .
Here,
$2 a^{2} y=x^{3}-3 a x^{2}$
Since, the point lies on the curve.
Hence, $2 a^{2} y_{1}=x_{1}^{3}-3 a x_{1}^{2} \quad \ldots$ (1)
Now, $2 a^{2} y=x^{3}-3 a x^{2}$
On differentiating both sides w.r.t. $x$, we get
$2 a^{2} \frac{d y}{d x}=3 x^{2}-6 a x$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-6 a x}{2 a^{2}}$
Slope of the tangent at $\left(x_{1}, y_{1}\right)=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{3 x_{1}^{2}-6 a x_{1}}{2 a^{2}}$
Given:
Slope of the tangent at $\left(x_{1}, y_{1}\right)=$ Slope of the $x$-axis
$\Rightarrow \frac{3 x_{1}^{2}-6 a x_{1}}{2 a^{2}}=0$
$\Rightarrow 3 x_{1}^{2}-6 a x_{1}=0$
$\Rightarrow x_{1}\left(3 x_{1}-6 a\right)=0$
$\Rightarrow x_{1}=0$ or $x_{1}=2 a$
Also,
$2 a^{2} y_{1}=0$ or $2 a^{2} y_{1}=8 a^{3}-12 a^{3} \quad$ [From eq. (1)]
$\Rightarrow y_{1}=0$ or $y_{1}=-2 a$
Thus, the required points are $(0,0)$ and $(2 a,-2 a)$.