Find the points of intersection of the lines $4 x+3 y=5$ and $x=2 y-7$
Suppose the given two lines intersect at a point $P\left(x_{1}, y_{1}\right) .$ Then, $\left(x_{1}, y_{1}\right)$
satisfies each of the given equations.
$\therefore 4 x+3 y=5$
or $4 x+3 y-5=0 \ldots$ (i)
and $x=2 y-7$
or $x-2 y+7=0$...(ii)
Now, we find the point of intersection of eq. (i) and (ii)
Multiply the eq. (ii) by 4, we get
$4 x-8 y+28=0$ ...............(iii)
On subtracting eq. (iii) from (i), we get
$4 x-8 y+28-4 x-3 y+5=0$
$\Rightarrow-11 y+33=0$
$\Rightarrow-11 y=-33$
$\Rightarrow y=\frac{33}{11}=3$
Putting the value of $y$ in eq. (i), we get
$4 x+3(3)-5=0$
$\Rightarrow 4 x+9-5=0$
$\Rightarrow 4 x+4=0$
$\Rightarrow 4 x=-4$
$\Rightarrow x=-1$
Hence, the point of intersection $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $(-1,3)$