Find the point on the parabolas $x^{2}=2 y$ which is closest to the point $(0,5)$.
Let the required point be $(x, y)$. Then,
$x^{2}=2 y$
$\Rightarrow y=\frac{x^{2}}{2}$ ....(1)
The distance between points $(x, y)$ and $(0,5)$ is given by
$d^{2}=(x)^{2}+(y-5)^{2}$
Now,
$d^{2}=Z$
$\Rightarrow Z=(x)^{2}+\left(\frac{x^{2}}{2}-5\right)^{2}$
$\Rightarrow Z=x^{2}+\frac{x^{4}}{4}+25-5 x^{2}$
$\Rightarrow \frac{d Z}{d y}=2 x+x^{3}-10 x$
For maximum or a minimum values of $Z$, we must have
$\frac{d Z}{d y}=0$
$\Rightarrow x^{3}-8 x=0$
$\Rightarrow x^{2}=8$
$\Rightarrow x=\pm 2 \sqrt{2}$
Substituting the value of $x$ in eq. (1), we get
$y=4$
$\frac{d^{2} Z}{d y^{2}}=3 x^{2}-8$
$\Rightarrow \frac{d^{2} Z}{d y^{2}}=24-8=16>0$
So, the nearest point is $(\pm 2 \sqrt{2}, 4)$.