Find the point on the curvey $y^{2}=2 x$ which is at a minimum distance from the point $(1,4)$.
Suppose a point $(\mathrm{x}, \mathrm{y})$ on the curve $y^{2}=2 x$ is nearest to the point $(1,4) .$ Then,
$y^{2}=2 x$
$\Rightarrow x=\frac{y^{2}}{2}$ ....(1)
$d^{2}=(x-1)^{2}+(y-4)^{2}$ [Using distance formula]
Now,
$Z=d^{2}=(x-1)^{2}+(y-4)^{2}$
$\Rightarrow Z=\left(\frac{y^{2}}{2}-1\right)^{2}+(y-4)^{2}$ [From eq. (1)]
$\Rightarrow Z=\frac{y^{4}}{4}+1-y^{2}+y^{2}+16-8 y$
$\Rightarrow \frac{d Z}{d y}=y^{3}-8$
For maximum or minimum values of $Z$, we must have
$\frac{d Z}{d y}=0$
$\Rightarrow y^{3}-8=0$
$\Rightarrow y^{3}=8$
$\Rightarrow y=2$
Substituting the value of $y$ in $(1)$, we get
$x=2$
Now,
$\frac{d^{2} Z}{d y^{2}}=3 y^{2}$
$\Rightarrow \frac{d^{2} Z}{d y^{2}}=12>0$
So, the required nearest point is $(2,2)$.