Find the point on the curve $y=x^{3}$ where the Slope of the tangent is equal to $x$ - coordinate of the point.
Given:
The curve is $y=x^{3}$
$y=x^{3}$
Differentiating the above w.r.t $x$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-1$
$\Rightarrow \frac{d y}{d x}=3 x^{2} \ldots(1)$
Also given the The Slope of the tangent is equal to the $x$ - coordinate,
$\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x} \ldots(2)$
From $(1) \&(2)$, we get,
i.e, $3 x^{2}=x$
$\Rightarrow x(3 x-1)=0$
$\Rightarrow x=0$ or $x=\frac{1}{3}$
Substituting $x=0$ or $x=\frac{1}{3}$ this in $y=x^{3}$, we get,
when $x=0$
$\Rightarrow y=0^{3}$
$\Rightarrow y=0$
when $x=\frac{1}{3}$
$\Rightarrow y=\left(\frac{1}{3}\right)^{3}$
$\Rightarrow y=\frac{1}{27}$
Thus, the required point is $(0,0) \&\left(\frac{1}{3}, \frac{1}{27}\right)$