Find the point on the curve $y 2=4 x$ which is nearest to the point $(2,-8)$
Let point $(x, y)$ be the nearest to the point $(2,-8)$. Then,
$y^{2}=4 x$
$\Rightarrow x=\frac{y^{2}}{4}$ ......(1)
$d^{2}=(x-2)^{2}+(y+8)^{2}$ [Using distance formula]
Now,
$Z=d^{2}=(x-2)^{2}+(y+8)^{2}$
$\Rightarrow Z=\left(\frac{y^{2}}{4}-2\right)^{2}+(y+8)^{2}$ [From eq. (1)]
$\Rightarrow Z=\frac{y^{4}}{16}+4-y^{2}+y^{2}+64+16 y$
$\Rightarrow \frac{d Z}{d y}=\frac{4 y^{3}}{16}+16$
For maximum or minimum values of $Z$, we must have
$\frac{d Z}{d y}=0$
$\Rightarrow \frac{4 y^{3}}{16}+16=0$
$\Rightarrow \frac{4 y^{3}}{16}=-16$
$\Rightarrow y^{3}=-64$
$\Rightarrow y=-4$
Substituting the value of $x$ in eq. (1), we get
$x=4$
Now,
$\frac{d^{2} Z}{d y^{2}}=\frac{12 y^{2}}{16}$
$\Rightarrow \frac{d^{2} Z}{d y^{2}}=12>0$
So, the nearest point is $(4,-4)$.