Find the point in yz-plane which is equidistant from the points A(3, 2, -1), B(1, -1, 0) and C(2, 1, 2).
The general point on yz plane is D(0, y, z). Consider this point is equidistant to the points A(3, 2, -1), B(1, -1, 0) and C(2, 1, 2).
$\therefore \mathrm{AD}=\mathrm{BD}$
$\sqrt{(0-3)^{2}+(y-2)^{2}+(z+1)^{2}}=\sqrt{(0-1)^{2}+(y+1)^{2}+(z-0)^{2}}$
Squaring both sides,
$(0-3)^{2}+(y-2)^{2}+(z+1)^{2}=(0-1)^{2}+(y+1)^{2}+(z-0)^{2}$
$9+y^{2}-4 y+4+z^{2}+2 z+1=1+y^{2}+2 y+1+z^{2}$
$-6 y+2 z+12=0$ ….(1)
Also, AD = CD
$\sqrt{(0-3)^{2}+(y-2)^{2}+(z+1)^{2}}=\sqrt{(0-2)^{2}+(y-1)^{2}+(z-2)^{2}}$
Squaring both sides,
$(0-3)^{2}+(y-2)^{2}+(z+1)^{2}=(0-2)^{2}+(y-1)^{2}+(z-2)^{2}$
$9+y^{2}-4 y+4+z^{2}+2 z+1=4+y^{2}-2 y+1+z^{2}-4 z+4$
$-2 y+6 z+5=0$ ..........(2)
Simultaneously solving equation (1) and (2) we get
$Y=31 / 16, z=-3 / 16$
The point which is equidistant to the points A(3, 2, -1), B(1, -1, 0) and C(2, 1, 2) is (0, 31/16, -3/16).