Find the perimeter and the area of the quadrilateral ABCD in which AB = 17 cm, AD = 9 cm, CD = 12 cm, AC = 15 cm and angle ACB = 90°.
Given are the sides of the quadrilateral ABCD in which
AB = 17 cm, AD = 9 cm, CD = 12 cm, AC = 15 cm and an angle ACB = 90°
By using Pythagoras theorem
$B C^{2}=A B^{2}-A C^{2}$
$B C^{2}=17^{2}-15^{2}$
BC = 8 cm
Now, area of triangle $A B C=1 / 2 \times A C \times B C$
Area of triangle $\mathrm{ABC}=1 / 2 \times 8 \times 15$
Area of triangle $A B C=60 \mathrm{~cm}^{2}$
Now, for the area of triangle ACD
Perimeter of triangle ACD 2s = AC + CD + AD
2s = 15 + 12 + 9
s = 18 cm
By using Heron's Formula,
Area of the triangle $\mathrm{ACD}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$
$=\sqrt{18 \times(3) \times(6) \times(9)}$
$=54 \mathrm{~cm}^{2}$
Area of quadrilateral ABCD = Area of triangle ABC + Area of triangle ACD
Area of quadrilateral $A B C D=60 \mathrm{~cm}^{2}+54 \mathrm{~cm}^{2}$
Area of quadrilateral $\mathrm{ABCD}=114 \mathrm{~cm}^{2}$