Find the perimeter and area of the quadrilateral ABCD in which AB = 17 cm, AD = 9 cm, CD = 12 cm, ∠ACB = 90° and AC = 15 cm.
In the right-angled
$A B^{2}=B C^{2}+A C^{2}$
$\Rightarrow 17^{2}=B C^{2}+15^{2}$
$\Rightarrow 17^{2}-15^{2}=B C^{2}$
$\Rightarrow 64=B C^{2}$
$\Rightarrow B C=8 \mathrm{~cm}$
Perimeter $=A B+B C+C D+A D$
$=17+8+12+9$
= 46 cm
Area of $\Delta A B C=\frac{1}{2}(b \times h)$
$=\frac{1}{2}(8 \times 15)$
$=60 \mathrm{~cm}^{2}$
In $\Delta A D C:$
$A C^{2}=A D^{2}+C D^{2}$
So, $\Delta A D C$ is a right - angled triangle at D.
Area of $\Delta A D C=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 9 \times 12$
$=54 \mathrm{~cm}^{2}$
$\therefore$ Area of the quadrilateral = Area of $\triangle A B C+$ Area of $\triangle A D C$
$=60+54$
$=114 \mathrm{~cm}^{2}$