Question.
Find the number of terms in each of the following AP's :
(i) $7,13,19 \ldots \ldots, 205$
(ii) $18,15 \frac{1}{2}, 13, \ldots,-47$
Find the number of terms in each of the following AP's :
(i) $7,13,19 \ldots \ldots, 205$
(ii) $18,15 \frac{1}{2}, 13, \ldots,-47$
Solution:
(i) $\mathrm{a}=7, \mathrm{~d}=6$,
$t_{n}=205$
$\Rightarrow a+(n-1) d=205$
$\Rightarrow 7+(n-1) \times 6=205 \quad \Rightarrow 6 n+1=205$
$\Rightarrow 6 n=204 \quad \Rightarrow n=34$
Hence, 34 terms
(ii) $a=18$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=15 \frac{1}{2}-18$
$\mathrm{d}=\frac{31-36}{2}=-\frac{5}{2}$
Let there are n terms in this A.P.
Therefore, $a_{n}=-47$ and we know that
$a_{n}=a+(n-1) d$
$-47=18+(n-1)\left(-\frac{5}{2}\right)$
$-47=18+(n-1)\left(-\frac{5}{2}\right)$
$-65=(n-1)\left(-\frac{5}{2}\right)$
$(n-1)=\frac{-130}{-5}$
$(n-1)=26$
$\mathrm{n}=27$
Therefore, this given A.P. has 27 terms in it.
(i) $\mathrm{a}=7, \mathrm{~d}=6$,
$t_{n}=205$
$\Rightarrow a+(n-1) d=205$
$\Rightarrow 7+(n-1) \times 6=205 \quad \Rightarrow 6 n+1=205$
$\Rightarrow 6 n=204 \quad \Rightarrow n=34$
Hence, 34 terms
(ii) $a=18$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=15 \frac{1}{2}-18$
$\mathrm{d}=\frac{31-36}{2}=-\frac{5}{2}$
Let there are n terms in this A.P.
Therefore, $a_{n}=-47$ and we know that
$a_{n}=a+(n-1) d$
$-47=18+(n-1)\left(-\frac{5}{2}\right)$
$-47=18+(n-1)\left(-\frac{5}{2}\right)$
$-65=(n-1)\left(-\frac{5}{2}\right)$
$(n-1)=\frac{-130}{-5}$
$(n-1)=26$
$\mathrm{n}=27$
Therefore, this given A.P. has 27 terms in it.