Find the number of sides of a regular polygon, when each of its angles has a measure of
(i) 160°
(ii) 135°
(iii) 175°
(iv) 162°
(v) 150°
(i) Each interior angle $=\left(\frac{2 n-4}{n} \times 90\right)^{\circ}$
So, $\left(\frac{2 n-4}{n} \times 90\right)^{\circ}=160^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{160^{\circ}}{90^{\circ}}$
$\Rightarrow \frac{2 n-4}{n}=\frac{16}{9}$
$\Rightarrow 18 n-36=16 n$
$\Rightarrow 2 n=36$
$\therefore n=18$
(ii) Each interior angle $=\left(\frac{2 n-4}{n} \times 90\right)^{\circ}$
So, $\left(\frac{2 n-4}{n} \times 90\right)^{\circ}=135^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{135^{\circ}}{90^{\circ}}$
$\Rightarrow \frac{2 n-4}{n}=\frac{3}{2}$
$\Rightarrow 4 n-8=3 n$
$\therefore \mathrm{n}=8$
(iii) Each interior angle $=\left(\frac{2 n-4}{n} \times 90\right)^{\circ}$
So, $\left(\frac{2 n-4}{n} \times 90\right)^{\circ}=175^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{175^{\circ}}{90^{\circ}}$
$\Rightarrow \frac{2 n-4}{n}=\frac{35}{18}$
$\Rightarrow 36 n-72=35 n$
$\therefore \mathrm{n}=72$
(iv) Each interior angle $=\left(\frac{2 n-4}{n} \times 90\right)^{\circ}$
So, $\left(\frac{2 n-4}{n} \times 90\right)^{\circ}=162^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{162^{\circ}}{90^{\circ}}$
$\Rightarrow \frac{2 n-4}{n}=\frac{9}{5}$
$\Rightarrow 10 n-20=9 n$
$\therefore n=20$
(v) Each interior angle $=\left(\frac{2 n-4}{n} \times 90\right)^{\circ}$
So, $\left(\frac{2 n-4}{n} \times 90\right)^{\circ}=150^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{150^{\circ}}{90^{\circ}}$
$\Rightarrow \frac{2 n-4}{n}=\frac{5}{3}$
$\Rightarrow 6 n-12=5 n$
$\therefore n=12$