Question:
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
Solution:
$|1-i|^{x}=2^{x}$
$\Rightarrow\left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x}$
$\Rightarrow(\sqrt{2})^{x}=2^{x}$
$\Rightarrow 2^{\frac{x}{2}}=2^{x}$
$\Rightarrow \frac{x}{2}=x$
$\Rightarrow x=2 x$
$\Rightarrow 2 x-x=0$
$\Rightarrow x=0$
Thus, 0 is the only integral solution of the given equation. Therefore, the number of non-zero integral solutions of the given equation is 0.