Question:
Find the non-zero value of $k$ for which the roots of the quadratic equation $9 x^{2}-3 k x+k=0$ are real and equal.
Solution:
The given equation is $9 x^{2}-3 k x+k=0$.
This is of the form $a x^{2}+b x+c=0$, where $a=9, b=-3 k$ and $c=k$.
$\therefore D=b^{2}-4 a c=(-3 k)^{2}-4 \times 9 \times k=9 k^{2}-36 k$
The given equation will have real and equal roots if D = 0.
$\therefore 9 k^{2}-36 k=0$
$\Rightarrow 9 k(k-4)=0$
$\Rightarrow k=0$ or $k-4=0$
$\Rightarrow k=0$ or $k=4$
But, k ≠ 0 (Given)
Hence, the required value of k is 4.