Find the multiplicative inverse (reciprocal) of each of the following rational numbers:
(i) 9
(ii) −7
(iii) $\frac{12}{5}$
(iv) $\frac{-7}{9}$
(v) $\frac{-3}{-5}$
(vi) $\frac{2}{3} \times \frac{9}{4}$
(vii) $\frac{-5}{8} \times \frac{16}{15}$
(viii) $-2 \times \frac{-3}{5}$
(ix) $-1$
(x) $\frac{0}{3}$
(xi) 1
(i) Multiplicative inverse (reciprocal) of $9=\frac{1}{9}$
(ii) Multiplicative inverse (reciprocal) of $-7=\frac{-1}{7}$
(iii) Multiplicative inverse (reciprocal) of $\frac{12}{5}=\frac{5}{12}$
(iv) Multiplicative inverse (reciprocal) of $\frac{-7}{9}=\frac{-9}{7}$
(v) Multiplicative inverse (reciprocal) of $\frac{-3}{-5}=\frac{-5}{-3}$ or $\frac{5}{3}$
(vi) Multiplicative inverse (reciprocal) of $\frac{2}{3} \times \frac{9}{4}=\frac{3}{2} \times \frac{4}{9}=\frac{2}{3}$
(vii) Multiplicative inverse (reciprocal) of $\frac{-5}{8} \times \frac{16}{15}=\frac{8}{-5} \times \frac{15}{16}=\frac{-3}{2}$
(viii) Multiplicative inverse (reciprocal) of $-2 \times \frac{-3}{5}=\frac{1}{-2} \times \frac{5}{-3}=\frac{5}{6}$
(ix) Multiplicative inverse (reciprocal) of $-1=\frac{1}{-1}=-1$
$(\mathrm{x})$ Multiplicative inverse (reciprocal) of $\frac{0}{3}=\frac{3}{0}=$ undefined
(ix) Multiplicative inverse (reciprocal) of $1=\frac{1}{1}=1$