Find the multiplicative inverse of each of the following:
$(1-\sqrt{3} i)$
Given: $(1-i \sqrt{3})$
To find: Multiplicative inverse
We know that,
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{Z}$
Putting $z=1-i \sqrt{3}$
So, Multiplicative inverse of $1-\mathrm{i} \sqrt{3}=\frac{1}{1-\mathrm{i} \sqrt{3}}$
Now, rationalizing by multiply and divide by the conjugate of $(1-\mathrm{i} \sqrt{3})$
$=\frac{1}{1-i \sqrt{3}} \times \frac{1+i \sqrt{3}}{1+i \sqrt{3}}$
$=\frac{1+i \sqrt{3}}{(1-i \sqrt{3})(1+i \sqrt{3})}$
Using $(a-b)(a+b)=\left(a^{2}-b^{2}\right)$
$=\frac{1+i \sqrt{3}}{(1)^{2}-(i \sqrt{3})^{2}}$
$=\frac{1+i \sqrt{3}}{1-3 i^{2}}$
$=\frac{1+i \sqrt{3}}{1-3(-1)}\left[\because i^{2}=-1\right]$
$=\frac{1+i \sqrt{3}}{1+3}$
$=\frac{1+i \sqrt{3}}{4}$
$=\frac{1}{4}+\frac{\sqrt{3}}{4} i$
Hence, Multiplicative Inverse of $(1-\mathrm{i} \sqrt{3})$ is $\frac{1}{4}+\frac{\sqrt{3}}{4} \mathrm{i}$