Find the multiplicative inverse of each of the following:
$\frac{(1+i)(1+2 i)}{(1+3 i)}$
Given: $\frac{(1+i)(1+2 i)}{(1+3 i)}$
To find: Multiplicative inverse
We know that
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{z}$
Putting $z=\frac{(1+i)(1+2 i)}{(1+3 i)}$
So, Multiplicative inverse of $\frac{(1+i)(1+2 i)}{(1+3 i)}=\frac{1}{\frac{(1+i)(1+2 i)}{(1+3 i)}}$
$=\frac{(1+3 i)}{(1+i)(1+2 i)}$
We solve the above equation
$=\frac{1+3 i}{1(1)+1(2 i)+i(1)+i(2 i)}$
$=\frac{1+3 i}{1+2 i+i+2 i^{2}}$
$=\frac{1+3 i}{1+3 i+2(-1)}\left[\because \mathrm{i}^{2}=-1\right]$
$=\frac{1+3 i}{-1+3 i}$
Now, we rationalize the above by multiplying and divide by the conjugate of (-1 + 3i)
$=\frac{1+3 i}{-1+3 i} \times \frac{-1-3 i}{-1-3 i}$
$=\frac{(1+3 i)(-1-3 i)}{(-1+3 i)(-1-3 i)} \ldots$ (i)
Now, we know that,
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, eq. (i) become
$=\frac{1(-1-3 i)+3 i(-1-3 i)}{(-1)^{2}-(3 i)^{2}}$
$=\frac{-1-3 i-3 i-9 i^{2}}{1-9 i^{2}}$
$=\frac{-1-6 i-9(-1)}{1-9(-1)}\left[\because i^{2}=-1\right]$
$=\frac{-1-6 i+9}{1+9}$
$=\frac{8-6 i}{10}$
$=\frac{2(4-3 i)}{10}$
$=\frac{4-3 i}{5}$
$=\frac{4}{5}-\frac{3}{5} i$
Hence, Multiplicative inverse of $\frac{(1+i)(1+2 i)}{(1+3 i)}=\frac{4}{5}-\frac{3}{5} i$