Question:
Find the multiplicative inverse of each of the following:
(2 + 5i)
Solution:
Given: 2 + 5i
To find: Multiplicative inverse
We know that,
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{Z}$
Putting z = 2 + 5i
So, Multiplicative inverse of $2+5 \mathrm{i}=\frac{1}{2+5 \mathrm{i}}$
Now, rationalizing by multiply and divide by the conjugate of (2+5i)
$=\frac{1}{2+5 i} \times \frac{2-5 i}{2-5 i}$
$=\frac{2-5 i}{(2+5 i)(2-5 i)}$
Using $(a-b)(a+b)=\left(a^{2}-b^{2}\right)$
$=\frac{2-5 i}{(2)^{2}-(5 i)^{2}}$
$=\frac{2-5 i}{4-25 i^{2}}$
$=\frac{2-5 i}{4-25(-1)}\left[\because i^{2}=-1\right]$
$=\frac{2-5 i}{4+25}$
$=\frac{2-5 i}{29}$
$=\frac{2}{29}-\frac{5}{29} i$
Hence, Multiplicative Inverse of $(2+5 \mathrm{i})$ is $\frac{2}{29}-\frac{5}{29} \mathrm{i}$