Find the modulus of each of the following complex numbers and hence.
express each of them in polar form: $\frac{-16}{1+\sqrt{3} i}$
$=\frac{-16}{1+\sqrt{3} i} \times \frac{1-\sqrt{3} i}{1-\sqrt{3} i}$
$=\frac{-16+16 \sqrt{3} i}{1-3 i^{2}}$
$=\frac{16 \sqrt{3} i-16}{4}$
$=4^{\sqrt{3}} \mathrm{i}-4$
Let $Z=4^{\sqrt{3}} i-4=r(\cos \theta+i \sin \theta)$
Now , separating real and complex part , we get
$-4=r \cos \theta \ldots \ldots \ldots .$ eq. 1
$4 \sqrt{3}=r \sin \theta \ldots \ldots \ldots \ldots$ eq. 2
Squaring and adding eq.1 and eq.2, we get
$64=r^{2}$
Since r is always a positive no., therefore,
r = 8
Hence its modulus is 8.
Now, dividing eq.2 by eq.1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{4 \sqrt{3}}{-4}$
$\tan \theta=-\sqrt{3}$
Since $\cos \theta=-\frac{1}{2} \sin \theta=\frac{\sqrt{3}}{2}$ and $\tan \theta=-\sqrt{3}$. Therefore the $\theta$ lies in second quadrant.
$\operatorname{Tan} \theta=-\sqrt{3}$, therefore $\theta=\frac{2 \pi}{3}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=8\left\{\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right\}$