Find the modulus of each of the following complex numbers and hence
express each of them in polar form: $\frac{1+\mathrm{i}}{1-\mathrm{i}}$
$=\frac{1+i}{1-i} \times \frac{1+i}{1+i}$
$=\frac{1+i^{2}+2 i}{1-i^{2}}$
$=\frac{2 i}{2}$
= i
Let Z = i = r(cosθ + isinθ)
Now , separating real and complex part , we get
0 = rcosθ ……….eq.1
1 = rsinθ …………eq.2
Squaring and adding eq.1 and eq.2, we get
$1=r^{2}$
Since r is always a positive no., therefore,
r = 1,
Hence its modulus is 1
Now, dividing eq.2 by eq.1 , we get
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{0}$
$\tan \theta=\infty$
Since $\cos \theta=0, \sin \theta=1$ and $\tan \theta=\infty$. Therefore the $\theta$ lies in first quadrant.
$\tan \theta=\infty$, therefore $\theta=\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=1\left\{\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right\}$