Find the modulus of each of the following complex numbers and hence
express each of them in polar form: $\frac{1+3 i}{1-2 i}$
$=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}$
$=\frac{1+6 i^{2}+5 i}{1-4 i^{2}}$
$=\frac{5 i-5}{5}$
$=i-1$
Let $Z=1-i=r(\cos \theta+i \sin \theta)$
Now , separating real and complex part , we get
$-1=\operatorname{rcos} \theta \ldots \ldots \ldots . . e q .1$
1 = rsinθ …………eq.2
Squaring and adding eq.1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore,
$r=\sqrt{2}$
Hence its modulus is $\sqrt{2}$.
Now, dividing eq.2 by eq.1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-1}$
$\operatorname{Tan} \theta=-1$
Since $\cos \theta=-\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$ and $\tan \theta=-1$. Therefore the $\theta$ lies in second quadrant.
$\operatorname{Tan} \theta=-1$, therefore $\theta=\frac{3 \pi}{4}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=\sqrt{2}\left\{\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right\}$