Find the modulus of each of the following complex numbers and hence
express each of them in polar form: $\sqrt{3}+\mathrm{i}$
Let $Z=\sqrt{3}+i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$\sqrt{3}=\operatorname{rcos} \theta \ldots \ldots \ldots . . \mathrm{eq} .1$
$1=r \sin \theta \ldots \ldots \ldots \ldots .$ eq. 2
Squaring and adding eq.1 and eq.2, we get
$4=r^{2}$
Since r is always a positive no., therefore,
r =2
Hence its modulus is 2.
Now, dividing eq.2 by eq.1, we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{\sqrt{3}}$
$\operatorname{Tan} \theta=\frac{1}{\sqrt{3}}$
Since $\cos \theta=\frac{\sqrt{3}}{2}, \sin \theta=\frac{1}{2}$ and $\tan \theta=\frac{1}{\sqrt{3}}$. Therefore the $\theta$ lies in first quadrant.
$\operatorname{Tan} \theta=\frac{1}{\sqrt{3}}$, therefore $\theta=\frac{\pi}{6}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=2\left\{\cos \left(\frac{\pi}{6}\right)+\operatorname{isin}\left(\frac{\pi}{6}\right)_{\}}\right.$