Find the modulus of each of the following complex numbers and hence
express each of them in polar form: $\frac{1-3 \mathrm{i}}{1+2 \mathrm{i}}$
$\frac{1-3 i}{1+2 i} \times \frac{1-2 i}{1-2 i}$
$=\frac{1+6 i^{2}-5 i}{1-4 i^{2}}$
$=\frac{-5 i-5}{5}$
$=-i-1$
Let $Z=-1-i=r(\cos \theta+i \sin \theta)$
Now , separating real and complex part , we get
$-1=\operatorname{rcos} \theta \ldots \ldots \ldots . . \mathrm{eq} .1$
$-1=r \sin \theta \ldots \ldots \ldots \ldots . e q .2$
Squaring and adding eq.1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore,
$r=\sqrt{2}$
Hence its modulus is $\sqrt{2}$.
Now, dividing eq.2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{-1}$
tanθ = 1
Since $\cos \theta=-\frac{1}{\sqrt{2}}, \sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$. Therefore the $\theta$ lies in third quadrant.
$\operatorname{Tan} \theta=1$, therefore $\theta=-\frac{3 \pi}{4}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=\sqrt{2}\left\{\cos \left(-\frac{3 \pi}{4}\right)+\mathrm{i} \sin \left(-\frac{3 \pi}{4}\right)\right\}$