Find the modulus of each of the following:
$\frac{(2-i)(1+i)}{(1+i)}$
Given: $\frac{(2-i)(1+i)}{(1+i)}$
Firstly, we calculate $\frac{(2-i)(1+i)}{(1+i)}$ and then find its modulus
$\frac{(2-i)(1+i)}{(1+i)}=\frac{2(1)+2(i)+(-i)(1)+(-i)(i)}{(1+i)}$
$=\frac{2+2 i-i-i^{2}}{1+i}$
$=\frac{2+i-(-1)}{1+i}\left[\because i^{2}=-1\right]$
$=\frac{3+i}{1+i}$
Now, we rationalize the above by multiplying and divide by the conjugate of 1 + i
$=\frac{3+i}{1+i} \times \frac{1-i}{1-i}$
$=\frac{(3+i)(1-i)}{(1+i)(1-i)} \ldots(\mathrm{i})$
Now, we know that,
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, eq. (i) become
$=\frac{3(1-i)+i(1-i)}{(1)^{2}-(i)^{2}}$
$=\frac{3(1)+3(-i)+i(1)+i(-i)}{1-i^{2}}$
$=\frac{3-3 i+i-i^{2}}{1-(-1)}\left[\because \mathrm{i}^{2}=-1\right]$
$=\frac{3-2 i-(-1)}{1+1}\left[\because \mathrm{i}^{2}=-1\right]$
$=\frac{3-2 i+1}{2}$
$=\frac{4-2 i}{2}$
$=2-i$
Now, we have to find the modulus of $(2-\mathrm{i})$
So, $|z|=|2-i|=|2+(-1) i|=\sqrt{(2)^{2}+(-1)^{2}}=\sqrt{4+1}=\sqrt{5}$