Question:
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Solution:
$\frac{1+i}{1-i}-\frac{1-i}{1+i}$
$=\frac{(1+i)(1+i)-(1-i)(1-i)}{(1-i)(1+i)}$
$=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}-i^{2}}$
$=\frac{4 i}{2} \quad\left(\because i^{2}=-1\right)$
$=2 i$
$\therefore|2 i|=\sqrt{0^{2}+2^{2}}$
$=2 \quad\left(\because|a+b i|=\sqrt{a^{2}+b^{2}}\right)$
$\Rightarrow\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=2$