Find the mode of the following distribution.
(i) Here, maximum frequency is 28 so the modal class is 40−50.
Therefore,
$l=40$
$h=10$
$f=28$
$f_{1}=12$
$f_{2}=20$
$\Rightarrow$ Mode $=l+\frac{f-f_{1}}{2 f+f_{1}-f_{2}} \times h$
$=40+\frac{28-12}{2 \times 28-12-20} \times 10$
$=40+\frac{16}{24} \times 10$
$=40+\frac{80}{12}$
$=40+6.67$
Mode $=46.67$
(ii) Here, maximum frequency is 75 so the modal class is 20−25.
Therefore,
$l=20$,
$h=5$
$f=75$
$f_{1}=45$
$f_{2}=35$
$\Rightarrow$ Mode $=l+\frac{f-f_{1}}{2 f-f_{1}-f_{2}} \times h$
$=20+\frac{75-45}{150-45-35} \times 5$
$=20+\frac{30}{70} \times 5$
$=20+\frac{30}{14}$
$=20+2.14$
Mode $=22.14$
(iii) Here, maximum frequency is 50 so the modal class is 35−40.
Therefore,
$l=35$
$h=5$
$f=50$
$f_{1}=34$
$f_{2}=42$
Mode $=l+\frac{f-f_{1}}{2 f-f_{1}-f_{2}} \times h$
$=35+\frac{50-34}{100-34-42} \times 5$
$=35+\frac{10}{3}$
$=35+3.33$
Mode $=38.33$