Find the missing frequencies in the following frequency distribution whose mean is 34.
We know that,
Mean $=\frac{\sum x_{i} f_{i}}{\sum f_{i}}$
For the following data:
Mean $=\frac{(10 \times 4)+\left(20 \times f_{1}\right)+(30 \times 8)+\left(40 \times f_{2}\right)+(50 \times 3)+(60 \times 4)}{35}$
$\Rightarrow 34=\frac{40+20 f_{1}+240+40 f_{2}+150+240}{35}$
$\Rightarrow 34(35)=670+20 f_{1}+40 f_{2}$
$\Rightarrow 1190-670=20 f_{1}+40 f_{2}$
$\Rightarrow 20 f_{1}+40 f_{2}=520$
$\Rightarrow 20\left(f_{1}+2 f_{2}\right)=520$
$\Rightarrow f_{1}+2 f_{2}=\frac{520}{20}$
$\Rightarrow f_{1}+2 f_{2}=26$
$\Rightarrow f_{1}=26-2 f_{2}$ $\cdots(1)$
Also, $4+f_{1}+8+f_{2}+3+4=35$
$\Rightarrow 19+f_{1}+f_{2}=35$
$\Rightarrow f_{1}+f_{2}=35-19$
$\Rightarrow f_{1}+f_{2}=16$
$\Rightarrow 26-2 f_{2}+f_{2}=16 \quad$ (from (1))
$\Rightarrow 26-f_{2}=16$
$\Rightarrow 26-16=f_{2}$
$\Rightarrow f_{2}=10$
Putting the value of f2 in (1), we get
$f_{1}=26-2(10)=6$
Hence, the value of f1 and f2 is 6 and 10, respectively.