Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 50.
Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 50.
It is given that
Mean = 50
$\Rightarrow \sum f x / N=50$
$\Rightarrow \frac{3480+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}}{\mathrm{~N}}=50$
$\Rightarrow 3480+30 f_{1}+70 f_{2}=50 \times 120$
$\Rightarrow 30 \mathrm{f}_{1}+70 \mathrm{f}_{3}=6000-3480$
$\Rightarrow 10\left(3 f_{1}+7 f_{2}\right)=10(252)$
$\Rightarrow 3 \mathrm{f}_{1}+7 \mathrm{f}_{2}=252 \cdots(1)[\because$ Divide by 10$]$
And N = 20
$\Rightarrow 17+f_{1}+32+f_{2}+19=120$
$\Rightarrow 68+f_{1}+f_{2}=120$
$\Rightarrow f_{1}+f_{2}=120-68$
$\Rightarrow f_{1}+f_{2}=52$
Multiply with 3 on both sides
$\Rightarrow 3 f_{1}+3 f_{2}=156 \cdots(2)$
Subtracting equation (2) from equation (1)
$\Rightarrow 3 f_{1}+7 f_{2}-3 f_{1}-3 f_{2}=252-156$
$\Rightarrow 4 \mathrm{f}_{2}=96$
$\Rightarrow \mathrm{f}_{2}=96 / 4=24$
Put the value of f2 in equation (1)
$\Rightarrow 3 f_{1}+7 \times 24=252$
$\Rightarrow 3 f_{1}=252-168$
$\Rightarrow f_{1}=84 / 3=28$
$\Rightarrow f_{1}=28$