Find the middle terms(s) in the expansion of:
(i) $\left(x-\frac{1}{x}\right)^{10}$
(ii) $\left(1-2 x+x^{2}\right)^{n}$
(iii) $\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}$
(iv) $\left(2 x-\frac{x^{2}}{4}\right)^{9}$
(v) $\left(x-\frac{1}{x}\right)^{2 n+1}$
(vi) $\left(\frac{x}{3}+9 y\right)^{10}$
(vii) $\left(3-\frac{x^{3}}{6}\right)^{7}$
(viii) $\left(2 a x-\frac{b}{x^{2}}\right)^{12}$
(ix) $\left(\frac{p}{x}+\frac{x}{p}\right)^{9}$
(X) $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
(i) $\left(x-\frac{1}{x}\right)^{10}$
Here, $n$ is an even number.
$\therefore$ Middle term $=\left(\frac{10}{2}+1\right)$ th $=6$ th term
Now, we have,
$T_{6}=T_{5+1}$
$={ }^{10} C_{5} x^{10-5}\left(\frac{-1}{x}\right)^{5}$
$=-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2}$
$=-252$
(ii) $\left(1-2 x+x^{2}\right)^{n}$
$=(1-x)^{2 n}$
$n$ is an even number.
$\therefore$ Middle term $=\left(\frac{2 n}{2}+1\right)$ th $=(n+1)$ th term
Now, we have,
$T_{n+1}={ }^{2 n} C_{n}(-1)^{n}(x)^{n}$
$=\frac{(2 n) !}{(n !)^{2}}(-1)^{n} x^{n}$
(iii) $\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}$
$=(1+x)^{6 n}$
Here, $n$ is an even number.
$\therefore$ Middle term $=\left(\frac{6 n}{2}+1\right)$ th $=(3 n+1)$ th term
Now, we have,
$T_{3 n+1}$
$={ }^{6 n} C_{3 n} x^{3 n}$
$=\frac{(6 n) !}{(3 n !)^{2}} x^{3 n}$
(iv) $\left(2 x-\frac{x^{2}}{4}\right)^{9}$
Here, $n$ is an odd number.
Therefore, the middle terms are $\left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+1}{2}+1\right)$ th, i. e. 5 th and 6 th terms.
Now, we have
$T_{5}=T_{4+1}$
$={ }^{9} C_{4}(2 x)^{9-4}\left(\frac{-x^{2}}{4}\right)^{4}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 2^{5} \frac{1}{4^{4}} x^{5+8}$
$=\frac{63}{4} x^{13}$
And,
$T_{6}=T_{5+1}$
$={ }^{9} C_{5}(2 x)^{9-5}\left(\frac{-x^{2}}{4}\right)^{5}$
$=-\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 2^{4} \frac{1}{4^{5}} x^{4+10}$
$=-\frac{63}{32} x^{14}$
(v) $\left(x-\frac{1}{x}\right)^{2 n+1}$
Here, $(2 n+1)$ is an odd number.
Therefore, the middle terms are $\left(\frac{2 n+1+1}{2}\right)$ th and $\left(\frac{2 n+1+1}{2}+1\right)$ th i. e. $(n+1)$ th and $(n+2)$ th terms.
Now, we have :
$T_{n+1}$
$={ }^{2 n+1} C_{n} x^{2 n+1-n} \times \frac{(-1)^{n}}{x^{n}}$
$=(-1)^{n}{ }^{2 n+1} C_{n} x$
And,
$T_{n+2}=T_{n+1+1}$
$={ }^{2 n+1} C_{n+1} x^{2 n+1-n-1} \frac{(-1)^{n+1}}{x^{n+1}}$
$=(-1)^{n+1}{ }^{2 n+1} C_{n+1} \times \frac{1}{x}$
(vi) $\left(\frac{x}{3}+9 y\right)^{10}$
Here, $n$ is an even number.
Therefore, the middle term is $\left(\frac{10}{2}+1\right)$ th, i.e., 6 th term.
Now, we have
$T_{6}=T_{5+1}$
$={ }^{10} C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5}$
$=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \times \frac{1}{3^{5}} \times 9^{5} \times x^{5} y^{5}$
$=61236 x^{5} y^{5}$
(vii) $\left(3-\frac{x^{3}}{6}\right)^{7}$
Here, $n$ is an odd number.
Therefore, the middle terms are $\left(\frac{7+1}{2}\right)$ th and $\left(\frac{7+1}{2}+1\right)$ th, i.e., 4 th and 5 th terms.
Now, we have
$T_{4}=T_{3+1}$
$={ }^{7} C_{3}(3)^{7-3}\left(\frac{-x^{3}}{6}\right)^{3}$
$=-\frac{105}{8} x^{9}$
And,
$T_{5}=T_{4+1}$
$={ }^{9} C_{4}(3)^{9-4}\left(\frac{-x^{3}}{6}\right)^{4}$
$=\frac{7 \times 6 \times 5}{3 \times 2} \times 3^{5} \times \frac{1}{6^{4}} x^{12}$
$=\frac{35}{48} x^{12}$
(viii) $\left(2 a x-\frac{b}{x^{2}}\right)^{12}$
Here, $n$ is an even number.
$\therefore$ Middle term $=\left(\frac{12}{2}+1\right)^{\text {th }}=7^{\text {th }}$ term
Now, we have
$T_{7}=T_{6+1}$
$={ }^{12} C_{6}(2 a x)^{12-6}\left(\frac{-b}{x^{2}}\right)^{6}$
$=\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \times\left(\frac{2 a b}{x}\right)^{6}$
$=\frac{59136 a^{6} b^{6}}{x^{6}}$
(ix) $\left(\frac{p}{x}+\frac{x}{p}\right)^{9}$
Here, $n$ is an odd number.
Therefore, the middle terms are $\left(\frac{9+1}{2}\right)^{\text {th }}$ and $\left(\frac{9+1}{2}+1\right)^{\text {th }}$, i.e., $5^{\text {th }}$ and $6^{\text {th }}$ terms.
Now, we have
$T_{5}=T_{4+1}$
$={ }^{9} C_{4}\left(\frac{p}{x}\right)^{9-4}\left(\frac{x}{p}\right)^{4}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times\left(\frac{p}{x}\right)$
$=\frac{126 p}{x}$
And,
$T_{6}=T_{5+1}$
$={ }^{9} C_{5}\left(\frac{p}{x}\right)^{9-5}\left(\frac{x}{p}\right)^{5}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times\left(\frac{x}{p}\right)$
$=\frac{126 x}{p}$
(x) $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
Here, $n$ is an even number.
$\therefore$ Middle term $=\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$ term
Now, we have
$T_{6}=T_{5+1}$
$={ }^{10} C_{5}\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^{5}$
$=-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}$
$=-252$