Question:
Find the measure of each exterior angle of a regular
(i) pentagon
(ii) hexagon
(iii) heptagon
(iv) decagon
(v) polygon of 15 sides.
Solution:
Exterior angle of an $n$-sided polygon $=\left(\frac{360}{n}\right)^{\circ}$
(i) For a pentagon: $n=5$
$\therefore\left(\frac{360}{n}\right)=\left(\frac{360}{5}\right)=72^{\circ}$
(ii) For a hexagon: $n=6$
$\therefore\left(\frac{360}{n}\right)=\left(\frac{300}{6}\right)=60^{\circ}$
(iii) For a heptagon: $n=7$
$\therefore\left(\frac{360}{n}\right)=\left(\frac{360}{7}\right)=51.43^{\circ}$
(iv) For a decagon: $n=10$
$\therefore\left(\frac{360}{n}\right)=\left(\frac{360}{10}\right)=36^{\circ}$
(v) For a polygon of 15 sides: $n=15$
$\therefore\left(\frac{360}{n}\right)=\left(\frac{360}{15}\right)=24^{\circ}$