Question:
Find the mean, median and mode of the following data:
Solution:
Therefore,
$l=150$
$h=50$
$f=6$
$f_{1}=5$
$f_{2}=5$
$F=10$
Mean $=\frac{\sum f_{i} x_{i}}{\sum f}$
$=\frac{4225}{25}$
Mean = 169
Thus, the mean of the data is 169.
Median $=l+\frac{\frac{N}{2}-F}{f} \times h$
$=150+\frac{12.5-10}{6} \times 50$
$=150+\frac{2.5}{6} \times 50$
$=150+\frac{125}{6}$
Median $=170.83$
Thus, the median of the data is 170.83.
Mode $=l+\frac{f-f_{1}}{2 f-f_{1}-f_{2}} \times h$
$=150+\frac{6-5}{12-5-5} \times 50$
$=150+\frac{1}{2} \times 50$
$=150+25$
$=175$
Thus, the mode of the data is 175.