Find the maximum value of $2 x^{3}-24 x+107$ in the interval $[1,3]$. Find the maximum value of the same function in $[-3,-1]$.
Given : $f(x)=2 x^{3}-24 x+107$
$\Rightarrow f^{\prime}(x)=6 x^{2}-24$
For a local maximum or a local minimum, we must have
$f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-24=0$
$\Rightarrow 6 x^{2}=24$
$\Rightarrow x^{2}=4$
$\Rightarrow x=\pm 2$
Thus, the critical points of $f$ in the interval $[1,3]$ are 1,2 and 3 .
Now,
$f(1)=2(1)^{3}-24(1)+107=85$
$f(2)=2(2)^{3}-24(2)+107=75$
$f(3)=2(3)^{3}-24(3)+107=89$
Hence, the absolute maximum value when $x=3$ in the interval $[1,3]$ is 89 .
Again, the critical points of $f$ in the interval $[-3,-1]$ are $-1,-2$ and $-3$.
So,
$f(-3)=2(-3)^{3}-24(-3)+107=125$
$f(-2)=2(-2)^{3}-24(-2)+107=139$
$f(-1)=2(-1)^{3}-24(-1)+107=129$
Hence, the absolute maximum value when $x=-2$ is 139 .