Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x − 5 cos x
(ii) 12 cos x + 5 sin x + 4
(iii) $5 \cos x+3 \sin \left(\frac{\pi}{6}-x\right)+4$
(iv) sin x − cos x + 1
(i) $\operatorname{Le} t f(x)=12 \sin x-5 \cos x$
We know that
$-\sqrt{12^{2}+(-5)^{2}} \leq 12 \sin x-5 \cos x \leq \sqrt{12^{2}+(-5)^{2}}$
$-\sqrt{144+25} \leq 12 \sin x-5 \cos x \leq \sqrt{144+25}$
$-13 \leq 12 \sin x-5 \cos x \leq 13$
Hence the maximum and minumun values of $f(x)$ are 13 and $-13$, respectively.
(ii) Let $f(x)=12 \cos x+5 \sin x+4$
We know that
$-\sqrt{12^{2}+5^{2}} \leq 12 \cos x+5 \sin x \leq \sqrt{12^{2}+5^{2}} \quad$ for all $x$
$\Rightarrow-\sqrt{169} \leq 12 \cos x+5 \sin x \leq \sqrt{169}$
$\Rightarrow-13 \leq 12 \cos x+5 \sin x \leq 13$
$\Rightarrow-9 \leq 12 \cos x+5 \sin x+4 \leq 17$
Hence, the maximum and minimum vaues of $f(x)$ are 17 and $-9$, respectively.
(iii) Let $f(x)=5 \cos x+3 \sin \left(\frac{\pi}{6}-x\right)+4$
Now $f(x)=5 \cos x+3\left(\sin 30^{\circ} \cos x-\cos 30^{\circ} \sin x\right)+4$
$=5 \cos x+\frac{3}{2} \cos x-\frac{3 \sqrt{3}}{2} \sin x+4$
$=\frac{13}{2} \cos x-\frac{3 \sqrt{3}}{2} \sin x+4$
We know that
$-\sqrt{\left(\frac{13}{2}\right)^{2}+\left(-\frac{3 \sqrt{3}}{2}\right)^{2}} \leq \frac{13}{2} \cos x-\frac{3 \sqrt{3}}{2} \sin x \leq \sqrt{\left(\frac{13}{2}\right)^{2}+\left(-\frac{3 \sqrt{3}}{2}\right)^{2}} \quad$ for all $x$
Therefore,
$-\sqrt{\frac{169+27}{4}} \leq \frac{13}{2} \cos x-\frac{3 \sqrt{3}}{2} \sin x \leq \sqrt{\frac{169+27}{4}}$
$\Rightarrow-\frac{14}{2}+4 \leq \frac{13}{2} \cos x-\frac{3 \sqrt{3}}{2} \sin x+4 \leq \frac{14}{2}+4$
$\Rightarrow-3 \leq \frac{13}{2} \cos x-\frac{3 \sqrt{3}}{2} \sin x+4 \leq 11$
Hence, maximum and minimun values of $f(x)$ are 11 and $-3$, respectively .
(iv) Let $f(x)=\sin x-\cos x+1$
We know that
$-\sqrt{1^{2}+(-1)^{2}} \leq \sin x-\cos x \leq \sqrt{1^{2}+(-1)^{2}} \quad$ for all $x$
$\Rightarrow-\sqrt{2} \leq \sin x-\cos x \leq \sqrt{2}$
$\Rightarrow-\sqrt{2}+1 \leq \sin x-\cos x+1 \leq \sqrt{2}+1$
Hence maximum and minimum values of $f(x)$ are $1+\sqrt{2}$ and $1-\sqrt{2}$, respectively.