Find the maximum and minimum values, if any, of the following functions given by
(i) $f(x)=(2 x-1)^{2}+3$
(ii) $f(x)=9 x^{2}+12 x+2$
(iii) $f(x)=-(x-1)^{2}+10$
(iv) $g(x)=x^{3}+1$
(i) The given function is $f(x)=(2 x-1)^{2}+3$.
It can be observed that $(2 x-1)^{2} \geq 0$ for every $x \in \mathbf{R}$.
Therefore, $f(x)=(2 x-1)^{2}+3 \geq 3$ for every $x \in \mathbf{R}$.
The minimum value of $f$ is attained when $2 x-1=0$.
$2 x-1=0 \Rightarrow x=\frac{1}{2}$
$\therefore$ Minimum value of $f=f\left(\frac{1}{2}\right)=\left(2 \cdot \frac{1}{2}-1\right)^{2}+3=3$
Hence, function f does not have a maximum value.
(ii) The given function is $f(x)=9 x^{2}+12 x+2=(3 x+2)^{2}-2$.
It can be observed that $(3 x+2)^{2} \geq 0$ for every $x \in \mathbf{R}$.
Therefore, $f(x)=(3 x+2)^{2}-2 \geq-2$ for every $x \in \mathbf{R}$.
The minimum value of $f$ is attained when $3 x+2=0$.
$3 x+2=0 \Rightarrow x=\frac{-2}{3}$
$\therefore$ Minimum value of $f=f\left(-\frac{2}{3}\right)=\left(3\left(\frac{-2}{3}\right)+2\right)^{2}-2=-2$
Hence, function f does not have a maximum value.
(iii) The given function is $f(x)=-(x-1)^{2}+10$.
It can be observed that $(x-1)^{2} \geq 0$ for every $x \in \mathbf{R}$.
Therefore, $f(x)=-(x-1)^{2}+10 \leq 10$ for every $x \in \mathbf{R}$.
The maximum value of $f$ is attained when $(x-1)=0$.
$(x-1)=0 \Rightarrow x=1$
$\therefore$ Maximum value of $f=f(1)=-(1-1)^{2}+10=10$
Hence, function $f$ does not have a minimum value.
(iv) The given function is $g(x)=x^{3}+1$.
Hence, function $g$ neither has a maximum value nor a minimum value.