Find the maximum and minimum values of the function $f(x)=\frac{4}{x+2}+x$.
Given : $f(x)=\frac{4}{x+2}+x$
$\Rightarrow f^{\prime}(x)=-\frac{4}{(x+2)^{2}}+1$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow-\frac{4}{(x+2)^{2}}+1=0$
$\Rightarrow-\frac{4}{(x+2)^{2}}=-1$
$\Rightarrow(x+2)^{2}=4$
$\Rightarrow x+2=\pm 2$
$\Rightarrow x=0$ and $-4$
Thus, $x=0$ and $x=-4$ are the possible points of local maxima or local minima.
Now,
$f^{\prime \prime}(x)=\frac{8}{(x+2)^{3}}$
At $x=0:$
$f^{\prime \prime}(0)=\frac{8}{(2)^{3}}=1>0$
So, $x=0$ is a point of local minimum.
The local minimum value is given by
$f(0)=\frac{4}{0+2}+0=2$
At $x=-4:$
$f^{\prime \prime}(-4)=\frac{8}{(-4)^{3}}=\frac{-1}{8}<0$
So, $x=-4$ is a point of local minimum.
The local maximum value is given by
$f(-4)=\frac{4}{-4+2}-4=-6$