Find the matrix $X$ so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
It is given that:
$X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
Now, let $X=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
Therefore, we have:
$\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
Equating the corresponding elements of the two matrices, we have:
$\begin{array}{lll}a+4 c=-7, & 2 a+5 c=-8, & 3 a+6 c=-9 \\ b+4 d=2, & 2 b+5 d=4, & 3 b+6 d=6\end{array}$
Now, $a+4 c=-7 \Rightarrow a=-7-4 c$
$\begin{aligned} \therefore 2 a+5 c=-8 & \Rightarrow-14-8 c+5 c=-8 \\ & \Rightarrow-3 c=6 \\ & \Rightarrow c=-2 \end{aligned}$
$\therefore a=-7-4(-2)=-7+8=1$
$\Rightarrow-3 c=6$
$\Rightarrow c=-2$
$\therefore a=-7-4(-2)=-7+8=1$
Now, $b+4 d=2 \Rightarrow b=2-4 d$
$\begin{aligned} \therefore 2 b+5 d=4 & \Rightarrow 4-8 d+5 d=4 \\ & \Rightarrow-3 d=0 \\ & \Rightarrow d=0 \end{aligned}$
$\therefore b=2-4(0)=2$
Thus, $a=1, b=2, c=-2, d=0$
Hence, the required matrix $X$ is $\left[\begin{array}{rr}1 & -2 \\ 2 & 0\end{array}\right]$.