Find the $\mathrm{LCM}$ and HCF of the following pairs of integers and verify that LCM $\times \mathrm{HCF}=$ product of two numbers.
Question.
Find the LCM and HCF of the following pairs of integers and verify that LCM $\times \mathrm{HCF}=$ product of two numbers.
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54
Find the LCM and HCF of the following pairs of integers and verify that LCM $\times \mathrm{HCF}=$ product of two numbers.
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54
Solution:
(i) 26 and 91
So, $26=2 \times 13$
So. $91=7 \times 13$
Therefore,
$\operatorname{LCM}(26,91)=2 \times 7 \times 13=182$
$\operatorname{HCF}(26,91)=13$
Verification : LCM $\times$ HCF $=182 \times 13=2366$
and $26 \times 91=2366$
i.e., $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers.
(ii) 510 and 92
$510=2 \times 3 \times 5 \times 17,92=2^{2} \times 23$
$\operatorname{LCM}(510,92)=2^{2} \times 3 \times 5 \times 17 \times 23=23460$
$\mathrm{HCF}=(510,92)=2$
Verification :–
LCM $\times$ HCF $=23460 \times 2=46920$
and $510 \times 92=46920$
i.e., $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers.
(iii) 336 and 54
$336=2^{4} \times 3 \times 7$
$54=2 \times 3^{3}$
$\mathrm{LCM}=2^{4} \times 3^{3} \times 7=3024$
$\mathrm{HCF}=2 \times 3=6$
Verfication,
LCM $\times$ HCF $=2^{4} \times 3^{3} \times 7 \times 2 \times 3=18144$
Product of two numbers $=336 \times 54=18144$
i.e., $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers.
(i) 26 and 91
So, $26=2 \times 13$
So. $91=7 \times 13$
Therefore,
$\operatorname{LCM}(26,91)=2 \times 7 \times 13=182$
$\operatorname{HCF}(26,91)=13$
Verification : LCM $\times$ HCF $=182 \times 13=2366$
and $26 \times 91=2366$
i.e., $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers.
(ii) 510 and 92
$510=2 \times 3 \times 5 \times 17,92=2^{2} \times 23$
$\operatorname{LCM}(510,92)=2^{2} \times 3 \times 5 \times 17 \times 23=23460$
$\mathrm{HCF}=(510,92)=2$
Verification :–
LCM $\times$ HCF $=23460 \times 2=46920$
and $510 \times 92=46920$
i.e., $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers.
(iii) 336 and 54
$336=2^{4} \times 3 \times 7$
$54=2 \times 3^{3}$
$\mathrm{LCM}=2^{4} \times 3^{3} \times 7=3024$
$\mathrm{HCF}=2 \times 3=6$
Verfication,
LCM $\times$ HCF $=2^{4} \times 3^{3} \times 7 \times 2 \times 3=18144$
Product of two numbers $=336 \times 54=18144$
i.e., $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers.