Find the length of the perpendicular from the origin to each of the following lines :
(i) $7 x+24 y=50$
(ii) $4 x+3 y=9$
(iii) $x=4$
Given: Point (0,0) and line 7x + 24y = 50
To find: The length of the perpendicular from the origin to the line $7 x+24 y=50$
Formula used:
We know that the length of the perpendicular from P (m,n) to the line ax + by + c = 0 is given by,
$D=\frac{|a m+b n+c|}{\sqrt{a^{2}+b^{2}}}$
The given equation of the line is $7 x+24 y-50=0$
Here $m=0$ and $n=0, a=7, b=24, c=-50$
$D=\frac{|7(0)+24(0)-50|}{\sqrt{7^{2}+24^{2}}}$
$D=\frac{|0+0-50|}{\sqrt{49+576}}=\frac{|-50|}{\sqrt{625}}=\frac{|-50|}{25}=\frac{50}{25}=2$
D = 2
The length of perpendicular from the origin to the line $7 x+24 y=50$ is 2 units
(ii) Given: Point (0,0) and line 4x + 3y = 9
To find: The length of perpendicular from the origin to the line 4x + 3y = 9
Formula used:
We know that the length of perpendicular from P (m,n) to the line ax + by + c = 0 is given by
$D=\frac{|a m+b n+c|}{\sqrt{a^{2}+b^{2}}}$
The given equation of the line is $4 x+3 y-9=0$
Here $m=0$ and $n=0, a=4, b=3, c=-9$
$D=\frac{|4(0)+3(0)-9|}{\sqrt{4^{2}+3^{2}}}$
$D=\frac{|0+0-9|}{\sqrt{16+9}}=\frac{|-9|}{\sqrt{25}}=\frac{|-9|}{5}=\frac{9}{5}$
$D=\frac{9}{5}$
The length of perpendicular from the origin to the line $4 x+3 y=9$ is $\frac{9}{5}$ units
(iii) Given: Point (0,0) and line x = 4
To find: The length of perpendicular from the origin to the line x = 4
Formula used: We know that the length of perpendicular from $(\mathrm{m}, \mathrm{n})$ to the line $\mathrm{ax}+\mathrm{by}$ $+c=0$ is given by,
$D=\frac{|a m+b n+c|}{\sqrt{a^{2}+b^{2}}}$
$D=\frac{|a m+b n+c|}{\sqrt{a^{2}+b^{2}}}$
The given equation of the line is $x-4=0$
Here $m=0$ and $n=0, a=1, b=0, c=-4$
$D=\frac{|1(0)+0(0)-4|}{\sqrt{1^{2}+0^{2}}}$
$D=\frac{|0+0-4|}{\sqrt{1+0}}=\frac{|-4|}{\sqrt{1}}=\frac{|-4|}{1}=4$
$D=4$
The length of perpendicular from the origin to the line x = 4 is 4 units