Question:
Find the least value of a such that the function $f$ given $f(x)=x^{2}+a x+1$ is strictly increasing on $[1,2]$.
Solution:
We have,
$f(x)=x^{2}+a x+1$
$\therefore f^{\prime}(x)=2 x+a$
Now, function f is increasing on [1,2].
$\therefore f^{\prime}(x) \geq 0$ on $[1,2]$
Now, we have $1 \leqslant x \leqslant 2$
$\Rightarrow 2 \leqslant 2 x \leqslant 4$
$\Rightarrow 2+a \leqslant 2 x+a \leqslant 4+a$
$\Rightarrow 2+a \leqslant f^{\prime}(x) \leqslant 4+a$
Since $f^{\prime}(x) \geq 0$
$\Rightarrow 2+a \geq 0$
$\Rightarrow a \geq-2$
So, least value of $a$ is $-2$.